Home

stranou Ashley Furman plienenie jm popper s r o potápač kľúčik A tím

Materials | Free Full-Text | Materials AIILnInO4 with Ruddlesden-Popper  Structure for Electrochemical Applications: Relationship between Ion  (Oxygen-Ion, Proton) Conductivity, Water Uptake, and Structural Changes
Materials | Free Full-Text | Materials AIILnInO4 with Ruddlesden-Popper Structure for Electrochemical Applications: Relationship between Ion (Oxygen-Ion, Proton) Conductivity, Water Uptake, and Structural Changes

First-Principles Investigation into Hybrid Improper Ferroelectricity in  Ruddlesden–Popper Perovskite Chalcogenides Sr3B2X7 (B = Ti, Zr, Hf; X = S,  Se) | The Journal of Physical Chemistry C
First-Principles Investigation into Hybrid Improper Ferroelectricity in Ruddlesden–Popper Perovskite Chalcogenides Sr3B2X7 (B = Ti, Zr, Hf; X = S, Se) | The Journal of Physical Chemistry C

Artificial Construction of the Layered Ruddlesden–Popper Manganite  La2Sr2Mn3O10 by Reflection High Energy Electron Diffraction Monitored  Pulsed Laser Deposition | Journal of the American Chemical Society
Artificial Construction of the Layered Ruddlesden–Popper Manganite La2Sr2Mn3O10 by Reflection High Energy Electron Diffraction Monitored Pulsed Laser Deposition | Journal of the American Chemical Society

Dynamic layer rearrangement during growth of layered oxide films by  molecular beam epitaxy | Nature Materials
Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy | Nature Materials

Catalysts | Free Full-Text | An Effective Strategy to Enhance the  Electrocatalytic Activity of Ruddlesden−Popper Oxides Sr3Fe2O7−δ Electrodes  for Solid Oxide Fuel Cells
Catalysts | Free Full-Text | An Effective Strategy to Enhance the Electrocatalytic Activity of Ruddlesden−Popper Oxides Sr3Fe2O7−δ Electrodes for Solid Oxide Fuel Cells

2020 – Seeing with Electrons
2020 – Seeing with Electrons

Ruddlesden-Popper interface in correlated manganite heterostructures  induces magnetic decoupling and dead layer reduction: Applied Physics  Letters: Vol 109, No 23
Ruddlesden-Popper interface in correlated manganite heterostructures induces magnetic decoupling and dead layer reduction: Applied Physics Letters: Vol 109, No 23

Exsolved Alloy Nanoparticles Decorated Ruddlesden–Popper Perovskite as  Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells | Energy & Fuels
Exsolved Alloy Nanoparticles Decorated Ruddlesden–Popper Perovskite as Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells | Energy & Fuels

Materials | Free Full-Text | Materials AIILnInO4 with Ruddlesden-Popper  Structure for Electrochemical Applications: Relationship between Ion  (Oxygen-Ion, Proton) Conductivity, Water Uptake, and Structural Changes
Materials | Free Full-Text | Materials AIILnInO4 with Ruddlesden-Popper Structure for Electrochemical Applications: Relationship between Ion (Oxygen-Ion, Proton) Conductivity, Water Uptake, and Structural Changes

Ruddlesden–Popper Oxychlorides Ba3Y2O5Cl2, Sr3Sc2O5Cl2, and Sr2ScO3Cl:  First Examples of Oxide-Ion-Conducting Oxychlorides | ACS Applied Energy  Materials
Ruddlesden–Popper Oxychlorides Ba3Y2O5Cl2, Sr3Sc2O5Cl2, and Sr2ScO3Cl: First Examples of Oxide-Ion-Conducting Oxychlorides | ACS Applied Energy Materials

Dynamics of the Lattice Oxygen in a Ruddlesden–Popper-type Sr3Fe2O7−δ  Catalyst during NO Oxidation | ACS Catalysis
Dynamics of the Lattice Oxygen in a Ruddlesden–Popper-type Sr3Fe2O7−δ Catalyst during NO Oxidation | ACS Catalysis

Nickel Exsolution‐Driven Phase Transformation from an n=2 to an n=1  Ruddlesden‐Popper Manganite for Methane Steam Reforming Reaction in SOFC  Conditions - Vecino‐Mantilla - 2019 - ChemCatChem - Wiley Online Library
Nickel Exsolution‐Driven Phase Transformation from an n=2 to an n=1 Ruddlesden‐Popper Manganite for Methane Steam Reforming Reaction in SOFC Conditions - Vecino‐Mantilla - 2019 - ChemCatChem - Wiley Online Library

Fredericksburg Police New SRO Vehicle | B101.5 Today's Best Music
Fredericksburg Police New SRO Vehicle | B101.5 Today's Best Music

Structure Dependent Phase Stability and Thermal Expansion of Ruddlesden– Popper Strontium Titanates | Chemistry of Materials
Structure Dependent Phase Stability and Thermal Expansion of Ruddlesden– Popper Strontium Titanates | Chemistry of Materials

Materials | Free Full-Text | Materials AIILnInO4 with Ruddlesden-Popper  Structure for Electrochemical Applications: Relationship between Ion  (Oxygen-Ion, Proton) Conductivity, Water Uptake, and Structural Changes
Materials | Free Full-Text | Materials AIILnInO4 with Ruddlesden-Popper Structure for Electrochemical Applications: Relationship between Ion (Oxygen-Ion, Proton) Conductivity, Water Uptake, and Structural Changes

BNWY F&F Navy Blue Shacket with tie belt Size L (16-18) | eBay
BNWY F&F Navy Blue Shacket with tie belt Size L (16-18) | eBay

High-sensitivity of initial SrO growth on the residual resistivity in  epitaxial thin films of SrRuO $$_3$$ 3 on SrTiO $$_3$$ 3 (001) | Scientific  Reports
High-sensitivity of initial SrO growth on the residual resistivity in epitaxial thin films of SrRuO $$_3$$ 3 on SrTiO $$_3$$ 3 (001) | Scientific Reports

Revealing a high-density three-dimensional Ruddlesden–Popper-type fault  network in an SmNiO3 thin film | SpringerLink
Revealing a high-density three-dimensional Ruddlesden–Popper-type fault network in an SmNiO3 thin film | SpringerLink

Effects of the Heterointerface on the Growth Characteristics of a  Brownmillerite SrFeO2.5 Thin Film Grown on SrRuO3 and SrTiO3 Perovskites |  Scientific Reports
Effects of the Heterointerface on the Growth Characteristics of a Brownmillerite SrFeO2.5 Thin Film Grown on SrRuO3 and SrTiO3 Perovskites | Scientific Reports

Ruddlesden-Popper interface in correlated manganite heterostructures  induces magnetic decoupling and dead layer reduction: Applied Physics  Letters: Vol 109, No 23
Ruddlesden-Popper interface in correlated manganite heterostructures induces magnetic decoupling and dead layer reduction: Applied Physics Letters: Vol 109, No 23